156 research outputs found

    2484: Establishment of the Tennessee-sickle cell disease network as a mechanism for engaging a rare disease population in patient centered outcomes research

    Get PDF
    OBJECTIVES/SPECIFIC AIMS: Despite the high prevalence of individuals diagnosed with sickle cell disease (SCD) in Tennessee, comprehensive care and education for patients with SCD is not as widely available as healthcare services for individuals managing other chronic illnesses. We aimed to engage SCD stakeholders in patient-centered outcomes research (PCOR) as a mechanism for advancing care and translational research for this rare disease population. METHODS/STUDY POPULATION: Through a partnership with the Sickle Cell Foundation of Tennessee, we implemented Community Health Ambassadors to systematically engage patient partners with SCD and their caregivers, aged 18–50 from rural and urban communities throughout Tennessee, in PCOR to establish a sustainable infrastructure, focused on connecting the SCD community through a service providing community-based organization to offer (1) information on how to connect with other families; and be informed about SCD community activities, or educational offerings; (2) training in basic research principals; and (3) opportunities to contribute to PCOR, including feedback on effective and practical ways for providing input on research efforts through patient centered input, comparing urban and rural area preferences. Community ambassadors utilized health fairs, clinic days at various hospitals and community centers, and social media to spread awareness of the project, in addition to boosting the recruitment process. RESULTS/ANTICIPATED RESULTS: A statewide SCD network was developed to offer social support and increase access to education, medical care, and engagement in research activities. Findings include: recruitment of 150 patients and 35 executive committee members (local physicians, community leaders, adults with SCD and parents of children with SCD). DISCUSSION/SIGNIFICANCE OF IMPACT: Most rural and urban families affected by SCD have no systematic way to engage in, or lend their expertise to, PCOR. A statewide network of patient partners, community stakeholders, researchers, and medical professionals will ultimately increase the standard of care for patients, and provide valuable insight for SCD research. The opportunity to create the underpinnings for coordinated patient-centered education for patients with SCD and their caregivers holds promise for developing a scalable PCOR process model for replication and implementation in other states and emulate this model with other rare disease populations

    WISE/NEOWISE Observations of Comet 103P/Hartley 2

    Get PDF
    We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg

    A Versatile and Efficient Novel Approach for Mendelian Randomization Analysis with Application to Assess the Causal Effect of Fetal Hemoglobin on Anemia in Sickle Cell Anemia

    Get PDF
    Mendelian randomization (MR) is increasingly employed as a technique to assess the causation of a risk factor on an outcome using observational data. The two-stage least-squares (2SLS) procedure is commonly used to examine the causation using genetic variants as the instrument variables. The validity of 2SLS relies on a representative sample randomly selected from a study cohort or a population for genome-wide association study (GWAS), which is not always true in practice. For example, the extreme phenotype sequencing (EPS) design is widely used to investigate genetic determinants of an outcome in GWAS as it bears many advantages such as efficiency, low sequencing or genotyping cost, and large power in detecting the involvement of rare genetic variants in disease etiology. In this paper, we develop a novel, versatile, and efficient approach, namely MR analysis under Extreme or random Phenotype Sampling (MREPS), for one-sample MR analysis based on samples drawn through either the random sampling design or the nonrandom EPS design. In simulations, MREPS provides unbiased estimates for causal effects, correct type I errors for causal effect testing. Furthermore, it is robust under different study designs and has high power. These results demonstrate the superiority of MREPS over the widely used standard 2SLS approach. We applied MREPS to assess and highlight the causal effect of total fetal hemoglobin on anemia risk in patients with sickle cell anemia using two independent cohort studies. A user-friendly Shiny app web interface was implemented for professionals to easily explore the MREPS

    The Role of Fibrocytes in Sickle Cell Lung Disease

    Get PDF
    <div><h3>Background</h3><p>Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of sickle cell lung disease.</p> <h3>Methodology/Principal Findings</h3><p>Fibrocytes were quantified and characterized in subjects with sickle cell disease or healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4 ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung collagen content and improved lung compliance and histology.</p> <h3>Conclusions</h3><p>These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell lung disease.</p> </div

    A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    Get PDF
    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities
    corecore